Search results for "Antimony trichloride"
showing 5 items of 5 documents
Synthesis and structure of tetrakis(tetramethylammonium) octacosachlorooctaantimonate(III) [(CH3)4N]4Sb8Cl28
2000
Abstract The reaction between antimony trichloride and tetramethylammonium chloride in nitromethane gives transparent, irregular crystals of tetrakis(tetramethylammonium) octacosachlorooctaantimonate(III) [(CH 3 ) 4 N] 4 Sb 8 Cl 28 . Crystals are triclinic, space group P-1, a =11.846(2), b =12.217(2), c=14.120(3) A , α =95.71(3), β =101.39(3), γ =118.59(3)°, V=1713.7(5) A 3 , Z =1, d c =2.193, d m =2.17(2) Mg m −3 . The structure contains a structurally novel Sb 8 Cl 28 4- anion. It is composed of eight deformed octahedra, connected with each other by faces. In cavities formed by inorganic sublattice are located two crystallographically nonequivalent tetramethylammonium cations. One of them…
Structure and Phase Transitions in Ethylenediammonium Dichloride and its Salts with Antimony Trichloride
2000
During the mixing of ethylenediammonium dichloride and antimony trichloride except of reported earlier [NH3(CH2)2NH3]5(Sb2Cl11)2 · 4 H2O a new salt [NH3(CH2)2NH3](SbCl4)2 was obtained. The crystals are monoclinic at 295 K, space group C2/m, a = 13.829(3), b = 7.408(1), c = 7.588(2) A; β = 103.18(3)°; V = 756.9(3) A3; Z = 2; dc = 2.585, dm = 2.56(2) g · cm–3. The structure consists of anionic sublattice built of Sb2Cl82– units composed of two SbCl52– square pyramids connected by edge. The ethylenediammonium cations are located in anionic cavities. The cations are disordered. Each methylene carbon atom is split between two positions. The X-ray diffraction, DSC, TGA and dilatometric methods we…
Crystal and Molecular Structure of 1,2,4-Triazolium Chloride and its Salt with Antimony Trichloride - Bis(1,2,4-triazolium) pentachloroantimonate(III…
2002
The structures of 1,2,4-triazolium chloride (C2H4N3)Cl and its derivative with antimony trichloride - (C2H4N3)2[SbCl5] · (C2H4N3)Cl containing unsubstituted 1,2,4-triazolium cations were determined. (C2H4N3)Cl crystallizes in the monoclinic system, space group P21/n with the unit cell dimensions at 86 K: a = 9.425(2), b = 8.557(2), c = 11.158(2)Å , β = 95.87(3)°; V = 895.2(3)Å3, Z=8, dc = 1.566, dm = 1.56(2) g·cm-3.At roomtemperature, crystals of (C2H4N3)2- [SbCl5] · (C2H4N3)Cl are orthorhombic, space group P212121, a = 8.318(2), b = 11.381(2), c = 19.931(4) Å, V = 1886.8(7) Å3, Z = 4, dc = 1.917, dm = 1.91(2) g·cm-3. In both crystals the 1,2,4-triazole rings are planar. The anionic sublatt…
Correlation spectroscopy in molten and supercooled antimony trichloride.
1990
Correlation spectroscopy measurements performed on molten and supercooled antimony trichloride with the homodyne technique show correlation functions that have a nonexponential behavior. Two well-defined distributions of correlation times can be observed in different temporal regions. This behavior is discussed in terms of a structural relaxation of clusters dynamically formed by intermolecular and interchain bonds. The Arrhenius plot of these correlation times shows a linear behavior with the same activation energy for both. In contrast, the activation energy of shear viscosity has a different value, showing that the processes determining the temperature behavior of \ensuremath{\tau} and $…
Structure of chloroantimonates(III) with an imidazolium cation: (C3H5N2)[SbCl4] and (C3H5N2)2[SbCl5]
2003
Abstract Two different chloroantimonates(III) with an imidazolium cation have been synthesized by the reaction of antimony trichloride and imidazole in an aqueous solution of hydrochloric acid. The crystals of (C3H5N2)[SbCl4] are monoclinic, space group C2/c, while (C3H5N2)2[SbCl5] crystallizes in the orthorhombic system, space group Pbcn. Both crystals are built of one dimensional zig-zag chains composed of [SbCl6]3− octahedra connected by edges and corners, respectively. The cavities between inorganic chains are filled by imidazolium cations. In both structures, one crystallographically independent imidazolium cation is rotationally disordered, and the positions of all atoms are split bet…